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Summary. Some types of  recurrence relations are modified to overcome the cases 
in which their conventional application is unstable in both the forward and 
backward directions. The original recurrence r e l a t ions -  connecting adjacent 
elements - are replaced by more general ones, where the non-adjacent elements 
are connected by coefficients obtained by new sets of  relations derived from the 
original ones. This modification can be helpful for the calculation of the 
complicated molecular integrals with Slater Type Orbitals (STOs). 

As a simple test we prove that some auxiliary functions - previously evalu- 
ated by expensive e x p a n s i o n s -  appearing in two-center two-electron integrals 
can be thus calculated with very low computer cost and high accuracy. 
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1 Introduction 

Some of the algorithms developed for the calculation of Slater molecular 
integrals [ 1-6] are based on their expression in terms of quantities depending on 
a small number  of  indices and variables, followed by the calculation of these 
quantities by means of  recurrence relations [2-5]. 

One limitation of this approach is the presence of  "unstabilities" in the 
recurrence relations which would necessitate a one by one calculation of  these 
quantities. In this way the computer  cost is always increased and the final 
accuracy of  the results is often reduced so that the algorithms become unreliable. 
In this context it is clearly interesting to search modifications in the application 
of these relations oriented to overcome the cases in which the recurrence is 
unstable in both the forward and backward directions. 

In this paper  we present an example of  such modifications. The basic idea is 
to replace the original recurrence relations - connecting contiguous elements - 
by more general ones in which no contiguous elements are connected by 
"coefficients" which are obtained by new sets of  relations derived from the 
original sets. Our example deals with the case of  a three-term inhomogeneous 
recurrence relation, often found in the calculations of  auxiliary functions for 
two- and three-center Slater molecular integrals. The next section contains a 
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detailed discussion of the algorithm. In the following section we test the 
algorithm by calculating some auxiliary functions which appear in some formula- 
tions of the calculation of two-center two-electron integrals with STOs. These 
have been selected among those for which the one by one calculation (by 
numerical [5] integrations or power series expansions [6]) becomes necessary 
because the conventional application of the recurrence relations fails in both 
forward and backward directions. The results show that in this case, our 
algorithm is extremely efficient and allows us to perform the calculation with 
very low computer cost and high accuracy. 

The present investigation does however not consider the problems arising 
from the fact that, in every molecular calculation, the s imultaneous computat ion 
o f  all integrals is required. This problem has been addressed by Ruedenberg and 
others [7] who have demonstrated that very large economies in computation can 
frequently be achieved by the so-called charge density vectorization, i.e. by 
calculating a relatively small number of intermediate quantities that are common  
to a very much larger number of integrals. As a result, the time to calculate all 
two-electron integrals of a molecule is no longer proportional to the number of 
integrals (i.e. the fourth power of the number of orbitals), but increases much 
more slowly. Unfortunately, one has to abandon the use of certain auxiliary 
functions, such as the WT', in order to gain such economies. 

2 Bisection algorithm 

We will assume that the recurrence relations between the set of unknown 
functions {fi}F=0 wi thf i  =fi(Xl, x 2 , . . . ,  x,) can be written as: 

e l f l  = A l f l +  l -~- B l f l - 1  q -Q1 ( 1 )  

where Pt =- e t ( x l ,  x2,. • . ,  x,), A t =- A l ( x l ,  x2,  . . . , x , ) ,  B t = B l ( x  1, x2 . . . . .  x , )  
and Qt = Qt(Xl ,  x2, • • •,  Xn) are known functions of both the l index and the 
(Xl, x2 . . . . .  x,) variables. 

Replacing first l by l + 1 and later l by l -  1 in Eq. (1), combining the 
resulting expressions with the original one and simplifying, f i  can be obtained in 
terms of f /+2 and f i -2 .  This procedure can be repeated k times to get finally: 

p~k)fi = A~k)fi+ 2k + B~k)fi_ 2k + Qt  k) (2) 

where p~k), A~k), Blk) and Q/k) can be obtained from the recurrence relations: 

p t k +  1) = u(k)  D ( k ) D ( k )  D(k) . ( k )o ( k )  A t  ~ B(k )p (k )  2 k l I q- ~t-2k~t  --l+2k--~t--2k-'*j "-'Z+2k-- 2k (3) 

A t k + 1) = ptk)_ zkA ~k)A (k) (4) l+ 2 k 

B ( k  + 1) _ B(,) . B(k )p (k )  . ( 5 )  
l - -  l --  2 ~: l 1 + 2 k 

Qtk  + 1) p(k)  f , ( k )p ( k )  _~ = l - : k ~ ,  l + 2 ~ -  P~g)-2kA~k)Q~k)+2k-- Qtk)-2kBlk)Ptk)+2k (6) 

which start from known values of P~ = p~o), A~ = A~ °), Bt = B~ °) and Qz = Q~O). 
The algorithm proceeds in three steps. First, the central value, lc, of l and the 

highest value of k, k . . . .  are selected, and the sets of coefficients p~k) A~k), B~k) 
and Q~k) are obtained according to Eqs. (3) to (6). Then, the initial, t i  C- 2km~x, and 
final, tic + 2k . . . .  values of the f/functions are calculated and, finally, the remaining 
functions are obtained by means of Eq. (2) in a sequential way. One starts by 
obtaining the central function fc and, choosing this as frontier, partitioning the 
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set of indices in two subintervals. The central one of each subinterval is 
calculated and four new subintervals are defined. This procedure is repeated until 
all the 2 ~max +1 functions f~ are evaluated. It should be noted that a very large 
amount off~ functions can be obtained using small values of kr.ax. 

3 Applications 

Although the algorithm can be applied to several auxiliary functions appearing 
in the calculation of molecular integrals with STOs, we choose the integrals: 

L ' f ( n ,  /3) = d~(~ 2 - 1)m/2QT'(~)~n e - ~  (7) 

where QT' denotes an associated Legendre function of the second type [8], to test 
the behavior of the algorithm. These integrals are required for evaluating general 
two-center two-electron integrals in some formulations such as that proposed in 
a recent work by Maslen and Trefry [6]. 

We will start recalling attention on the existence of the recurrence relations: 

1 
LT'+ 1 (n' fl) = 21 +~---i- [(l - m)( l  - m + 1)L~+ l(n,  fl) - (l + m ) ( l + m  + 1)LT'_l(n, 13)] 

(8) 

and 

(2l  + l )L ' / ' (n  + l , / 3 ) = ( l - m  + l)L'~+l(n,  fl) + ( l  + m ) L ' [ ' _ l ( n , / 3  ) (9) 

which allow us to reduce the problem of the evaluation of the more simple 
functions: 

Lt(/3) - L°(0,/3) = d~ e ~¢Qt(~) (10) 

Now, the use of: 

combined with the 
relation: 

d 
(2l + 1)Q,(~) = ~ (Q, + 1  ( ~ )  - -  Q,-1 (~)) (11) 

integration by parts leads to the additional recurrence 

e-/~ 
/3 [Zl+ 1(/3) -- Z / -  1(/3)] '~l(l-q- 1) (12) Lt(/3) = 21 + 1 

which has just the form of Eq. (1). 
Moreover, our study of the stability of this relation shows that (i) in the 

forward direction is always unstable from certain value l to the value of/3; (ii) 
in the backward direction is unstable for all values of l and/3. 

In the application of the bisection algorithm we require the evaluation of the 
first and last elements. For the first one we choose l = 0 and we obtain, by direct 
integration: 

Lo(/3) = 2~ {F(0, 2/3) e ~ + [C + In 2/3] e -~} (13) 

where F(0, 2/3) denotes the incomplete gamma function [9] and C is the Euler's 
constant. 
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For  the last one (l = 2 km~x + 1) we choose a few terms of the simple asymptotic 
formula: 

k ! q  - k - 1)!  
L , ( f l ) = e - a k = O  ~ (--2fl)k F + k ~ - - ] ~  (14) 

which can be easily derived integrating by parts. 
Table 1 is representative of the results obtained with the bisection algorithm. 

All the results are obtained with an accuracy of  at least fourteen figures working 
in double precision because the errors in the last ones are rapidly self-cancelled. 
In the assayed cases a unique additional step in k was sufficient to ensure the 
mentioned fourteen figures accuracy, as shown in Table 2. 

Table 3 is indicative of  the required computer time. It is clear from it that the 
calculation of one of  these complicated functions becomes (even for moderate 
/max) less expensive than that of a single square root. We note, however, that the 
two-center integrals depend on the LT'(n, fl) functions through an intermediate 
set of auxiliary functions: 

W~ (n, n" ; fl, fl') = d4 d4'4"4'"" e -(a¢ +/r¢')(42 - 1) m/2 

x (4 , 2 -  1)m/2p']'(4<)Q'p(4>) (15) 

where 4< and 4> stand for the smaller and the greater of 4, 4'. 
Due to the existence of simple recurrence relations for increasing m [4] also 

here, we can restrict ourselves to the case with m = 0 for which these functions 
can be written: 

t ,  ~ # .  # W°(n, n ,  fl, fl') wt(n, n ,  fl, fl') + wt(n , n; fl', fi) (16) 

Table 1. L l ( f l )  f u n c t i o n s  f o r  s e v e r a l  v a l u e s  o f  l a n d  fl 

/1 = 0 . 1  /~ = 5 . 0  /7 = 30.0 

l = 0  

l = 1  

l = 2  

l = 3  

l = 4  

1 = 5  

l = 6  

l = 7  

l = 8  

l = 9  

l =  10 

l = 1 1  

l =  12 

1 = 1 3  

l =  14 

l = 1 5  

l = 1 6  

0 . 2 0 8 6 2 2 2 5 5 5 5 2 3 8 0 E + 0 1  

0 . 3 8 7 6 9 5 6 8 6 3 8 8 1 5 8 E ÷ 0 0  

0 . 1 4 4 5 3 1 8 7 6 6 2 9 1 5 4 E + 0 0  

0 . 7 3 9 7 7 7 0 0 8 7 9 5 3 1 4 E  - 01 

0 . 4 4 7 5 2 6 6 6 3 1 9 9 2 4 7 E - 0 1  

0 . 2 9 9 4 9 2 8 8 5 1 0 9 3 2 0 E  - 0 1  

0 . 2 1 4 3 7 2 0 3 0 5 7 2 6 2 0 E - 0 1  

0 . 1 6 0 9 8 4 3 9 6 5 3 2 0 8 4 E  - 0 1  

0 . 1 2 5 3 1 4 9 5 5 8 5 0 5 5 1 E  - -  01 

0 . 1 0 0 3 1 0 0 7 6 3 8 7 8 2 8 E  - -  01 

0 . 8 2 1 0 6 1 9 9 8 8 9 7 9 1 7 E  - 02  

0 . 6 8 4 4 3 1 6 3 4 6 6 6 8 7 1 E  - 02  

0 . 5 7 9 2 7 2 7 0 8 4 3 6 8 6 4 E  - 02  

0 . 4 9 6 6 1 2 2 6 3 7 6 1 0 2 5 E  - 02  

0 . 4 3 0 4 6 1 4 6 8 0 2 9 5 5 7 E  - 02  

0 . 3 7 6 6 9 9 3 1 1 1 7 6 3 9 1 E  - 02  

0 . 3 3 2 4 1 4 7 6 9 7 3 2 6 3 3 E - - 0 2  

0 . 2 0 0 2 0 8 9 3 7 6 5 7 7 2 4 E  - 02  

0 . 9 3 1 5 2 8 0 7 3 8 4 6 4 2 7 E  - 03 

0 . 5 3 9 6 2 2 1 2 1 1 5 9 4 5 8 E  - 03 

0 . 3 4 8 1 5 9 0 2 8 4 9 1 6 4 0 E  - 03 

0 . 2 4 0 9 5 0 9 4 4 4 8 7 7 8 2 E  - 03 

0 . 1 7 5 4 5 5 4 9 8 6 5 1 9 5 5 E  - 03 

0 . 1 3 2 8 3 6 9 2 8 2 5 5 8 1 6 E  - 03 

0 . 1 0 3 7 2 0 5 0 7 4 1 1 7 8 6 E  - 03 

0 . 8 3 0 3 7 0 0 4 1 1 1 5 9 6 5 E  - 04  

0 . 6 7 8 6 5 4 9 0 8 7 8 8 4 5 3 E  - -  04  

0 . 5 6 4 3 4 7 7 3 9 3 4 2 6 6 7 E  - -  04  

0 . 4 7 6 2 4 4 7 4 1 6 4 9 5 6 5 E - - 0 4  

0 . 4 0 7 0 0 1 1 1 1 8 5 5 4 2 5 E - - 0 4  

0 . 3 5 1 6 5 1 9 0 3 7 8 3 9 1 2 E  - -  04  

0 . 3 0 6 7 5 0 3 0 4 6 4 7 8 0 7 E  - 0 4  

0 . 2 6 9 8 4 6 8 8 0 5 1 7 5 8 7 E  - 0 4  

0 . 2 3 9 1 6 4 6 5 5 7 5 9 7 6 9 E - - 0 4  

0 . 7 3 1 1 3 5 7 1 5 0 6 8 0 5 3 E  - 14 

0 . 4 3 8 4 7 1 3 5 2 5 2 7 9 5 4 E - 1 4  

0 . 3 0 7 1 0 1 7 0 1 8 7 8 8 4 0 E -  14 

0 . 2 2 9 7 2 0 9 9 8 1 5 1 0 8 9 E - 1 4  

0 . 1 7 8 7 4 9 4 8 8 1 6 4 4 2 4 E  - 14 

0 . 1 4 2 9 8 1 5 0 0 0 6 7 8 1 4 E - 1 4  

0 . 1 1 6 8 0 5 0 9 0 7 9 2 3 5 3 E  - 14 

0 . 9 7 0 5 0 1 3 5 7 6 4 4 0 3 0 E  - 15 

0 . 8 1 7 7 9 9 5 3 5 9 5 6 2 4 9 E  - 15 

0 . 6 9 7 4 4 1 5 0 9 1 7 5 3 3 6 E  - 15 

0 . 6 0 1 0 1 3 0 9 7 6 6 3 7 2 7 E  - 15 

0 . 5 2 2 6 6 5 5 7 9 5 2 2 8 4 3 E  - -  15 

0 . 4 5 8 2 2 5 0 7 1 5 5 2 1 3 9 E  - 15 

0 . 4 0 4 6 4 6 7 8 3 9 7 6 5 3 9 E  - -  15 

0 . 3 5 9 6 6 7 5 7 9 7 7 0 7 9 6 E  - 15 

0 . 3 2 1 5 7 7 7 2 0 4 5 9 1 5 8 E  - 15 

0 . 2 8 9 0 6 6 9 0 1 9 7 5 7 5 1 E  - 15 



A u x i l i a r y  func t i ons  for  S la te r  m o l e c u l a r  in tegra l s  

Tab le  2. A c c u r a c y  as f u n c t i o n  o f  kma x 

fl k m ~  L32 (fl) 

0.5 4 

0.5 5 

0.5 6 

1.0 4 

1.0 5 

1.0 6 

2.0 4 

2.0 5 

2.0 6 

4.0 4 

4.0 5 

4.0 6 

8.0 4 

8.0 5 

8.0 6 

16.0 4 

16.0 5 

16.0 6 

32.0 4 

32.0 5 

32.0 6 

64.0 4 

64.0 5 

64.0 6 

0 .573822253 E - 03 

0 .57382225061349E  --  03 

0 .57382225061349E  --  03 

0 .34771215  E - -  03 

0 .34771214189268E  --  03 

0 . 3 4 7 7 1 2 1 4 1 8 9 2 6 8 E - - 0 3  

0 .12767574  E - 03 

0 .12767570619541E  - 03 

0 .12767570619541E  --  03 

0 .1721471 E - 04 

0 .17214670339269E  - 04 

0 .17214670339269E  - 04 

0 .312997 E - 06 

0 .31299118111864E  - 06 

0 .31299118111864E  - 06 

0 .10352  E - 09 

0 .10351297672707E  - 09 

0 .10351297672707E  - 09 

0 .1135 E - -  16 

0 .11339934085393E  --  16 

0 .11339934085393E  - 16 

0 .137 E - -  30 

0 .13679282691195E  --  30 

0 .13679282691195E  --  30 

105 

w,(n, n'; t ,  t8") = L ° ( n ,  18)K°(n ", 18") 

-- £ L ° ( n + i ,  f l + f l  ") 
i = 0  

( - 1)(~-J)/2(l + j  - 1) ! (n'  + j ) !  Z (2) 

j =  (o,1) ( l  - - j )  .~! f l ' ""  + J +  1 

I 

- -  Z L ° ( n  + n" + i, fl + fl ") f l ' ~  
~=o ( n ' +  i)! 

t ( -- 1)(t-J)/2(l + j  -- 1 ) ! ( n '  + j ) !  
(2) 

j =  (i,i + 1) (l _ j )  !j!flo + ' 
( 1 7 )  
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Table  3. Ca lcu la t ion  t ime (in microseconds)  per  e lement  Lt(n, fl) 

J. Fe rmindez  Rico et  al. 

L M A X  N M A X  Time L M A X  N M A X  Time L M A X  N M A X  Time 

16 5 28 32 5 23 64 10 14 

16 10 20 32 10 17 64 20 12 

16 15 19 32 15 14 64 30 11 

32 20 13 64 40 11 

32 25 13 64 50 10 
A square  roo t  in double  p r e d s i o n  takes  a b o u t  1 5 m i c r o s e c o n d s  on  an  I B M 4 3 8 1  

where the summations over the j index run over values with the same parity as 
I. In this equation: 

fl K~(n,  fl) - Kl(n, fl) = d~ e-~¢~"Pl(~)  (18) 

can be calculated (also with full accuracy) by the relations: 
e - #  

Ko(0, fl) = (19) 

e - #  
K I ( 0  , f l ) = ~ - ( 1  + 1 / f l )  ( 2 0 )  

2 / +  1 
K , +  1 ( 0 ,  fl  ) - -  K t ( O ,  f l)  + K , _  1 (0 ,  f l )  ( 2 1 )  

together with 

(2l + 1)Kt(n + 1, fl) = (l + 1)//l+ ,(n, fl) + lKt_ l(n, fl) (22) 

Equation (17) can be subject to cancellation errors in the summations. A quick 
look to that equation shows that these errors must be always important for small 
fl and fl' but it can become also severe for large fl and fl' if high values of the 
l index are needed, as it is shown in Table 4. 

Table 4. Cance l la t ion  errors  in W~t (0, 0, fl, fl ')  funct ions  

f l = l ,  f l ' = l  f l = 1 0 ,  f l ' = l  f l =  10, f i ' = 1 0  

l = 0 0 .73996409970089E--01  0.12864863856225E - 05 0.30410608198259E - 10 

l = 1 0 .20900007759504E--01  0.41689322656819E - 06 0 .14122085391963E--10  
! = 2 0.91907927677545E - 02 0.19403567160378E - 06 0 .81800434869322E--11  
l = 3 0.50429705533407E - 02 0.10922268722835E - 06 0.52812601487281E -- 11 
l = 4 0.315517144806 E - - 0 2  0.69216663380 E -- 07 0.36584000658839E -- 11 

1 = 5 0.215072855945 E - - 0 2  0.47517176964 E - - 0 7  0 .26664861207873E--11  
l =  6 0.155656041588 E - - 0 2  0.34536675088 E - - 0 7  0 .20205351166307E--11  

l = 7 0.11772582138 E -- 02 0.2619233318 E -- 07 0.15788458319192E -- 11 
l = 8 0.92085536 E -- 03 0.205257218 E -- 07 0.12648123613838E -- 11 
l = 9 0.73964498 E -- 03 0.16508176 E -- 07 0.10342825201113E -- 11 
l = 10 0.6069438 E - 03 0.1355939 E - - 0 7  0.8604690529064 E - - 1 2  
l = 11 0.50689 E - 03 0.1133249 E - - 0 7  0.7264161319500 E - - 1 2  
l = 12 0.430 E -  03 0.959 E - - 0 8  0.621000033889 E - - 1 2  

l = 13 0.36 E - 03 0.83 E - - 0 8  0.536695834304 E -  12 
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4 Remarks 

The bisection algorithm enables us to calculate the complicated functions L~ (n,/~) 
with high accuracy and a very low computer time. However, as regards the 
accurate calculation of the two-center two-electron integrals, the accurate compu- 
tation of the Lt(n, t~) and Kl(n, ~) functions is not sufficient because the combina- 
tions of these functions in Eq. (17) often lead to important loss of accuracy, i.e. 
a decreasing in the number of accurate significant places. Nevertheless, this 
happens at the same time as the value of the integrals decreases so that the number 
of accurate decimal places remains almost constant. 

However, when the auxiliary functions WT' of Eqs. (15-17) are used, then 
the total computation time is strictly proportional to the number of integrals 
calculated. Until the contrary has been demonstrated, it appears not too likely 
that such a method can outperform charge-density vectorized methods such as 
those mentioned in the introduction [7]. Of course, even in the context of 
charge-density vectorized methods, certain auxiliary functions and the recurrence 
relations between them play important roles. 
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